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Abstract. We investigate the magnetotransport in semiconductors under the influence of a dc or slowly-
varying electric field, an intense polarized radiation field of terahertz frequency, and a uniform magnetic
field, being in arbitrary directions and having arbitrary strengths. Effective force- and energy-balance
equations are derived by using a gauge that the magnetic field and the high-frequency radiation field are
described by a vector potential and the dc or slowly-varying field by a scalar potential, and by distinguish-
ing the slowly-varying velocity from the rapidly-oscillating velocity related to the high-frequency field.
These equations, which include the elastic photon process and all orders of multiphoton absorption and
emission processes, are applied to the examination of the effect of a terahertz radiation on the magne-
tophonon resonance of the longitudinal resistivity in the transverse configuration in nonpolar and polar
semiconductors. We find that the previous zero-photon resonance peaks are suppressed by the irradiation
of the terahertz field, while many new peaks, which may be related to multiphoton absorption and emission
processes, emerge and can become quite distinct, at moderately strong radiation field.

PACS. 72.20.My Galvanomagnetic and other magnetotransport effects – 72.30.+q High-frequency effects;
plasma effects – 72.20.Ht High-field and nonlinear effects

1 Introduction

The magnetic field has played a crucial role in the de-
velopment of our understanding of condensed matters.
In particular, deep insight into the properties of semi-
conductors has been generated by phenomena related to
magnetotransport such as Hall effect, Shubnikov-de Haas-
van Alphen oscillation, cyclotron resonance, and mag-
netophonon resonance. Since first proposed theoretically
by Gurevich and Firsov [1], magnetophonon resonance
(MPR) has been extensively investigated, both experi-
mentally and theoretically in semiconductors [2]. It arises
from the unique feature of the electron density of states as
a result of the Landau quantization and the resonance oc-
curs when the energy separation between two Landau lev-
els matches the optic phonon energy, leading to oscillating
behavior in a variety of transport and optical properties
of the system as functions of the magnetic field. MPR can
exist in both nondegenerate and degenerate semiconduc-
tors at relatively high temperatures when optic-phonon
scattering contributes and has become one of the main
instruments of semiconducting compound spectroscopy.

The recent development of the free-electron laser,
which provides a continuously tunable source of linearly
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polarized terahertz (THz) electromagnetic radiation of
high intensity, has made it possible to irradiate a semi-
conductor with an intense far-infrared field under various
conditions. Nonlinear dynamics of the electron gas driven
by THz radiation fields in semiconductors has become a
central focus of many experimental and theoretical studies
in the literature [3–12]. Interesting and unusual phenom-
ena related to multiphoton processes have been observed
in resonant tunneling systems and in miniband superlat-
tices [3–5]. When a magnetically-quantized semiconductor
is exposed to an intense electromagnetic radiation of THz
frequency, the magnetophonon resonance behavior is ex-
pected to be affected significantly by the radiation field
due to multiphoton emission and absorption. These in-
teresting phenomena can only be disclosed within a fully
nonlinear theory capable of dealing with the situation hav-
ing a strong dc electric field, an intense high-frequency
electromagnetic field and a strong dc magnetic field
coexisting.

Theoretically, in the presence of a THz radiation field
and a magnetic field, most of previous investigations on
transport were carried out based on linear response the-
ory [13]. To our knowledge, the recent work of Bryksin
and Kleinert [14] is the only exception, who studied the
influence of a strong THz irradiation on transport in
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semiconductor superlattices in the presence of dc elec-
tric and magnetic fields in the Wannier-Stark and Landau
quantization regime in longitudinal-parallel configuration
(dc electric and magnetic fields and the high-frequency
radiation field are all perpendicular to the layer of the
superlattice).

The purpose of the present paper is to develop a
balance-equation approach to terahertz-driven magneto-
transport in semiconductors with a dc or slowly-varying
electric field, an intense polarized radiation field of THz
frequency and a uniform magnetic field, being in arbitrary
directions and having arbitrary strengths, applied simul-
taneously in the system. Using a gauge that the magnetic
field and the high-frequency radiation field are described
by a vector potential and the dc or slowly-varying field by
a scalar potential, we are able to distinguish the slowly-
varying velocity from the rapidly-oscillating velocity re-
lated to the high-frequency field. Following the procedure
in deriving the Lei-Ting balance equations [15], and con-
sidering the fact that relevant transport quantities are
measured as averages over a time interval much longer
than the period of the radiation field, we obtain a set of
momentum and energy balance equations, which formally
are the extension of the original balance equation in the
presence of the magnetic field [16] to include all the mul-
tiphoton processes.

These equations are applied to the examination of
magnetophonon resonance in the longitudinal resistivity
in hot-electron transport in a semiconductor driven by
a THz radiation having various frequency and strength
and subjected to a dc bias. We will focus on the trans-
verse configurations in nonpolar and polar semiconduc-
tors at moderately high lattice temperatures. Numerical
calculation shows that the previous magnetophonon res-
onance peaks in the longitudinal resistivity as a function
of the strength of the magnetic field in the absence of
high-frequency field, are suppressed by the irradiation of
the terahertz electromagnetic field, while many new peaks,
which correspond to multiple photon emission and absorp-
tion processes, emerge and may become quite distinct, un-
der the influence of a moderately strong radiation field.

2 The electron system subject to a dc
magnetic field and a high-frequency field

We consider an isotropic three-dimensional (3D) electron
system, consisting of N electrons in a unit volume, hav-
ing constant effective mass m and charge e. These elec-
trons are interacting with each other and also coupled with
phonons and scattered by randomly distributed impurities
in the lattice.

To model the situation of a magnetically-quantized
system irradiated by an intense terahertz (THz) field, we
assume that a constant magnetic field B, a dc (or slowly
varying) electric field E0, and a uniform sinusoidal radi-
ation field of frequency ω and amplitude Eω, Eω sin(ωt),
are applied simultaneously in the system. B, E0 and Eω

can be in arbitrary directions and of arbitrary strengths.

We describe these electric and magnetic fields (B, E0 and
Eω sin(ωt)) by means of a vector potential A(r, t) and a
scalar potential ϕ(r) of the form

A(r, t) = A(r) + (Eω/ω) cos(ωt), (1)
ϕ(r) = −r ·E0, (2)

in which A(r) is the vector potential of the uniform mag-
netic field B:

∇×A(r) = B. (3)

In the presence of these electric and magnetic fields the
Hamiltonian of the system reads

H = HeE +Hei +Hep +Hph. (4)

Here

HeE =
∑
j

[
1

2m
(pj − eA(rj , t))

2 + ϕ(rj)
]

+Hee (5)

is the Hamiltonian of the electrons under the influence
of the electric and magnetic fields with Hee being the
electron-electron Coulomb interaction, Hei and Hep are,
respectively, the electron-impurity and electron-phonon
couplings, and Hph stands for the phonon Hamiltonian.
In equation (5), rj and pj are the coordinate and mo-
mentum of the jth electron, and the spin-splitting is not
included for simplicity.

Introducing the center-of-mass (CM) momentum
and coordinate variables P and R, and the relative
electron momentum and coordinate variables p′j and
r′j (j = 1, ...N)

P =
∑
j

pj , R =
1
N

∑
j

rj , (6)

p′j = pj −
1
N

P, r′j = rj −R, (7)

we can separate the HamiltonianHeE into a CM partHCM

and a relative electron part Her:

HeE = HCM +Her,

HCM =
1

2Nm
(P−NeA(R, t))2 −NeE0 ·R (8)

Her =
∑
j

1
2m

(
p′j − eA(r′j)

)2 +
1

4πε0

∑
i<j

e2

|r′i − r′j |
· (9)

Note that both the dc electric field E0 and the high-
frequency electric field Eω sin(ωt) exert only on the center-
of-mass, and relative electrons do not directly see the ex-
istence of either one of them (E0 or Eω). Furthermore, in
the presence of the radiation field, Hei and Hep have ex-
actly the same expressions as those given in reference [15],
in terms of CM coordinate R and the density operator of
the relative electrons,

ρq =
∑
j

eiq·r′j . (10)
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3 Force- and energy-balance equations

Based on the Heisenberg equation of motion, we can ob-
tained the velocity (operator) of the center-of-mass, V,
which is the rate of change of the CM coordinate R, and
the acceleration operator of the center-of-mass, V̇, which
is the rate of change of CM velocity:

V = −i [R,H] =
1
Nm

(P−NeA(R, t))

=
1
Nm

(P−NeA(R))− vω cos(ωt), (11)

with vω ≡ eEω/(mω), and

V̇ = −i [V,H] +
∂V
∂t

=
e

m
E0 +

e

m
(V ×B) +

F
Nm

+ ωvω sin(ωt), (12)

with

F = −i
∑
q,a

u(q) q eiq·(R−ra)ρq

− i
∑
q,λ

M (q, λ) qφqλ eiq·Rρq. (13)

We can also obtain the rate of change of the relative elec-
tron energy:

Ḣer = −i [Her,H]

= −i
∑
q,a

u(q) eiq·(R−ra)ρ̇q − i
∑
q,λ

M(q, λ)φqλ eiq·Rρ̇q.

(14)

In equations (13, 14) ra and u(q) are the impurity position
and its potential, M(q, λ) is the matrix element due to
coupling between electrons and a phonon of wavevector q
in branch λ having energy Ωqλ, φqλ ≡ bqλ + b†−qλ stands
for the phonon field operator, and ρ̇q ≡ −i[ρq,Her].

Following reference [15], we treat the CM coordinate R
and velocity V classically, and, by neglecting their small
fluctuations we will regard them as time-dependent ex-
pectation (or average) values of the CM coordinate and
velocity, R(t) and V(t). Furthermore, the statistical aver-
age of the CM velocity consists of a slowly-varying part〈

1
Nm

(P−NeA(R))
〉

0

= v0 (15)

and a rapid oscillating part −vω cos(ωt). We write

V(t) = v0 − vω cos(ωt), (16)

and thus

R(t) =
∫ t

t0

V(s)ds + R(t0). (17)

Therefore, HIt ≡ Hei + Hep, V̇ and Ḣer are time-
dependent operators in the relative-electron–phonon
systems.

These results indicate that, as far as the relative elec-
tron system is concerned, everything is the same as that
discussed in reference [12] except that the vector poten-
tial related to the uniform magnetic field, A(r), shows up
in Her. Therefore we can proceed in the same way as in
reference [12] to obtain the density matrix of the relative
electron system. For semiconductors with relatively high
carrier density, it is adequate to solve the Liouville equa-
tion for the density matrix of the relative electron-phonon
system by starting from an initial state at time t = −∞,
in which the phonon system is in equilibrium at the lat-
tice temperature T and the relative electron system is in
equilibrium at an electron temperature Te:

ρ̂|t=−∞ = ρ̂0 =
1
Z

e−Her/Tee−Hph/T . (18)

With the density matrix thus obtained to the first order
in Hei +Hep, we can derive the momentum- and energy-
balance equation by taking the statistical average of the
operator equations (12) and (14). If all the transport quan-
tities are measured as averages over a time interval much
longer than the period of the terahertz field, any part os-
cillating at frequency ω and its harmonics will be washed
out. Therefore, after the statistical average and this “long-
time interval” average, only slowly varying part of a trans-
port quantities survive. For instance, the average of the
rate of change of CM velocity, V̇, can be identified as the
time derivative of the slowly-varying CM velocity, dv0/dt,
and the average of the rate of change of the relative elec-
tron energy, Ḣer, can be identified as the time derivative of
the slowly-varying relative electron energy, dEe/dt. Thus,
we are left with the following force- and energy-balance
equations containing only the slowly-varying quantities:

d
dt

v0 =
eE0

m
+

e

m
v0 ×B +

Fi

Nm
+

Fp

Nm
, (19)

d
dt
Ee = −v0 · (Fi + Fp)−W + Sp. (20)

Here

Fi = ni

∑
q

|u(q)|2 q
∞∑

n=−∞
J2
n(q · rω)Π2(q, ω0 − nω),

(21)

and

Fp = 2
∑
q,λ

|M(q, λ)|2 q

×
∞∑

n=−∞
J2
n(q · rω)Λ(q, λ,Ωqλ + ω0 − nω) (22)

are frictional forces experienced by the CM due to impu-
rity and phonon scatterings in the presence of magnetic
field and terahertz radiation field,

W = 2
∑
q,λ

|M(q, λ)|2 Ωqλ

×
∞∑

n=−∞
J2
n(q · rω)Λ(q, λ,Ωqλ + ω0 − nω) (23)
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is the energy-transfer rate from the electron system to the
phonon system, and

Sp = ni

∑
q

|u(q)|2

×
∞∑

n=−∞
J2
n(q · rω)nωΠ2(q, ω0 − nω) + 2

∑
q,λ

|M(q, λ)|2

×
∞∑

n=−∞
J2
n(q · rω)nω Λ(q, λ,Ωqλ + ω0 − nω) (24)

is the net rate of the energy the electron system gains
from the radiation field through impurity- and phonon-
assisted multiphoton (absorption and emission) processes
(n = ±1,±2, ...). In equations (21–24), ω0 ≡ q · v0,
rω ≡ vω/ω = eEω/(mω2), Jn(x) is the Bessel function
of order n, Π2(q, Ω) is the imaginary part of the Fourier
representation of the electron density-density correlation
function Π(q, t) in the presence of the magnetic field,
which is defined by

Π(q, t) = −iθ(t)〈[ρq(t), ρ−q(0)]〉0, (25)

in which 〈..〉0 stands for the statistical average with ref-
erence to the initial density matrix (18). And we have
denoted

Λ(q, λ,Ω) ≡ Π2(q, Ω)
[
n

(
Ωqλ

T

)
− n

(
Ω

Te

)]
, (26)

with n(x) ≡ 1/[exp(x)− 1] being the Bose function.
Except an additional classical Lorentz-force term

showing up in the force-balance equation, the force- and
the energy-balance equations and the expressions for Fi,
Fp, W and Sp, are formally the same as those for hot-
electron transport driven by a terahertz radiation in
the absence of a magnetic field [12]. The major effect
of the magnetic field on terahertz-field-driven transport
is included in the density-density correlation function
Π(q, Ω) of the electrons, which is drastically modified
when the magnetic field is strong. Under random-phase-
approximation (RPA), the effect of the Coulomb interac-
tion between electrons gives rise to a dynamical screening,
such that [16] Π(q, Ω) = Π0(q, Ω)/ε(q, Ω), where ε(q, Ω)
is the RPA dielectric function, and Π0(q, Ω) is the den-
sity correlation function of noninteracting electrons in the
presence of the magnetic field.

Without loss of generality, we assume that the mag-
netic field is in the z direction: B = (0, 0, B). The energy
spectrum of electron forms the Landau levels (n = 1, 2, ...)

εn(kz) = (n+
1
2

)ωc +
k2
z

2m
, (27)

where ωc = |eB|/m is the cyclotron frequency. The den-
sity correlation function of noninteracting electrons can
be written in the Landau representation:

Π0(q, Ω) =
1

2πl2
∑
n,n′

Cn,n′(l2q2
‖/2)Π0(n, n′, qz , Ω). (28)

Here l2 = 1/|eB| is the magnetic length, q2
‖ ≡ q2

x+ q2
y, and

Cn,n′(x) ≡ n2!
n1!

xn1−n2e−x[Ln1−n2
n2

(x)]2, (29)

with n1 = max(n, n′), n2 = min(n, n′), and Llm(x) being
the associated Laguerre polynomial. Without including
the Landau level broadening,Π0(n, n′, qz, Ω) function was
given in reference [16]. Its imaginary partΠ02(n, n′, qz, Ω),
to which the dominant contribution comes from the
small |qz| region, exhibits a delta-function-type peak
Π02(n, n′, 0, Ω) ∼ δ(Ω + (n′ − n)ωc) at qz = 0. People
generally introduce a Landau level broadening in order
to eliminate the logarithm divergence in the linear mag-
netoresistivity in the transverse configuration. The selec-
tion of the broadening parameter, however, is somewhat
arbitrary. We note that when system is biased by a fi-
nite dc current (v0 6= 0), the nonlinearity itself results
in an equivalent broadening and the divergence is elimi-
nated naturally [17]. In this paper, we will focus on hot-
electron magnetotransport having a sufficient dc current
bias to avoid the need for an additional broadening of the
Landau levels.

If E0 is a constant (dc) field, we can seek for the steady-
state solution to equations (19, 20) with the steady-state
values v0 and Te determined by the following equations:

NeE0 +Nev0 ×B + F = 0, (30)

v0 · F +W − Sp = 0, (31)

in which F = Fi + Fp. These equations are valid for E0

(or v0) and Eω in arbitrary directions. It is easily seen
that for the following 4 configurations the frictional force
F will be in the direction opposite to v0 and we can write
v0 · F = v0F (v0), W = W (v0) and Sp = Sp(v0) with
F (v0), W (v0) and Sp(v0) being functions of v0 = |v0|
only: (a) longitudinal-parallel configuration L‖: v0‖B,
Eω‖B; (b) longitudinal-perpendicular configuration L⊥:
v0‖B, Eω ⊥ B; (c) transverse-parallel configuration T‖:
v0 ⊥ B, Eω‖B; (d) transverse-perpendicular configura-
tion T⊥: v0 ⊥ B, Eω‖v0. For these configurations, it is
convenient to define a resistivity function

ρ(v0) = − F (v0)
N2e2v0

, (32)

and an energy-dissipation resistivity function

ρE(v0) =
W (v0)− Sp(v0)

N2e2v2
0

· (33)

The energy-balance equation (31) is written as

ρ(v0)− ρE(v0) = 0, (34)

which determines the electron temperature for given v0. In
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the longitudinal configurations (L‖ and L⊥), the resistivity
is given by

ρzz ≡
E0

Nev0
= ρ(v0). (35)

In the transverse configurations (T‖ and T⊥), the longi-
tudinal resistivity is given by

ρxx ≡
E0 · v0

Nev2
0

= ρ(v0). (36)

In view of the behavior of Π02(q, Ω) function, the domi-
nant contribution to the integration in expressions (21–
24) for Fi, Fp, W and Sp, generally comes from the
small |qz| region (in comparison with dominant q‖), where
the argument q · rω of the Bessel functions is generally
small if Eω‖B, such that J2

n(q · rω) (n 6= 0) is small and
J2

0 (q · rω) ≈ 1. This indicates that in the parallel config-
urations (T‖ and L‖) the effect of the radiation field on
magnetotransport is weaker than in the case of Eω ⊥ B.
On the other hand, since it is known that, in the absence
of a high-frequency field, the magnetophonon resonance in
the longitudinal configuration appears much smaller than
in the transverse configuration, we expect a similar con-
clusion for photon-assisted magneto-phonon resonance. In
the following, we will focus on T⊥ configuration.

4 Nonpolar semiconductors

We first consider nonpolar semiconductors at rela-
tively high lattice temperature with dominant optical-
phonon deformation potential scattering: |M(q, λ)|2 =
D2/(2dcΩo), where Ωo is the optic phonon frequency, dc

is the mass density of the lattice and D is the shift of the
band edge per unit relative displacement of the two sub-
lattices in associate with the optic phonon mode. Assum-
ing nondegenerate distribution and ignoring the screening,
we can write the imaginary part of the electron density
correlation function in the magnetic field, Π02(q, Ω), in a
closed-form integral representation in terms of elementary
functions [18]. In the case of zero spin-splitting,

Π02(q, Ω) = −
(m

2π

)3/2

ωcT
1/2
e eµ/Te

sinh(Ω/2Te)
sinh(ωc/2Te)

×
∫ ∞

0

dy cos(Ωy/2) exp
[
−(1 + T 2

e y
2)

q2
z

8mTe

]

× exp

[
−

q2
‖

2mωc

cosh(ωc/2Te)− cos(ωcy/2)
sinh(ωc/2Te)

]
, (37)

where µ is the chemical potential, which is related to the
carrier density N as

eµ/Te =
(2π)3/2N sinh(ωc/2Te)

m3/2T
1/2
e ωc

· (38)

Using this expression and carrying out the qy and qz in-
tegrations, we have

ρ(v0) =
D2mω

1/2
c T

1/2
e

4π2e2dcΩo sinh(Ωo/2T )v0

×
∞∑

n=−∞

∫
qxdqxJ2

n(qxrω)AD(qx, nω), (39)

ρE(v0) = − D2mω
1/2
c T

1/2
e

4π2e2dcΩo sinh(Ωo/2T )v2
0

×
∞∑

n=−∞
(Ωo − nω)

∫
dqxJ2

n(qxrω)AD(qx, nω),

(40)

in which

AD(qx, nω) ≡
∫ ∞

0

dy
cos[(Ωo + qxv0 − nω)y/2]√

1 + T 2
e y

2

× sinh
(
Ωo + qxv0 − nω

2Te
− Ωo

2T

)

×
√

sinh(ωc/2Te)
cosh(ωc/2Te)− cos(ωcy/2)

× exp
[
− q2

x

2mωc

cosh(ωc/2Te)− cos(ωcy/2)
sinh(ωc/2Te)

]
.

(41)

We use vo ≡ (Ωo/m)1/2 and E∗o ≡ (mΩ3
o)1/2/|e|, as the

velocity scale and the field-strength scale. For a typical
system with m = 0.082me (me is the free electron mass)
and Ωo = 30.5 meV, we have vo = 2.5 × 107 cm/s and
E∗o = 55.7 kV/cm. Under the condition that the semi-
conductor is dc-current biased to v0 = 0.03vo along the
x-direction, and the lattice temperature is T = 0.4Ωo,
we calculate the electron temperature Te and the longi-
tudinal resistivity ρxx = ρ(v0) from equations (34, 36)
in the absence and in the presence of a high-frequency
sinusoidal electric field. The ac fields polarize along the
x-direction, having angular frequency ω = 0.1Ωo and 3
different strengths: Eω = 0.005E∗o , 0.0075E∗o, and 0.01E∗o .
The calculated value of the longitudinal resistivity ρxx,
normalized by its value in the absence of the magnetic
field and high-frequency field, ρ0, is plotted in Figure 1 as
a function of ωc/Ωo.

In the absence of high-frequency field (Eω = 0), we
have the conventional hot-electron magnetophonon reso-
nance [19]: the longitudinal resistivity ρxx (due to non-
polar optic phonon scattering) as a function of the mag-
netic field exhibits a marked hump consisting of two peaks
around each center position determined by the condition
Mωc = Ωo with a small dip at the center, and a deep val-
ley between two neighboring center positions. The two-
peak appearance of the hump around an expected reso-
nant position (M = 1 or 2) is due to the existence of
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Fig. 1. The multiphoton-magnetophonon resonance in the lon-
gitudinal resistivity ρxx of a nonpolar semiconductor driven
by a dc bias velocity v0 = 0.03vo and by a radiation field
of frequency ω = 0.1Ωo having three different amplitudes
Eω = 0.005, 0.0075, and 0.01E∗o in the T⊥ configuration. The
lattice temperature is T = 0.4Ωo. The optic phonon defor-
mation potential scattering is assumed to dominate. Here ρ0

represents the resistivity of the system at the same lattice
temperature with the same dc bias velocity in the absence of
the magnetic field (B = 0) and in the absence of the radia-
tion field (Eω = 0). The multiphoton peaks are indicated by
two integers (M,n) with reference to the resonant condition
Mωc + nω = Ωo.

the finite dc current bias, which shifts the resonance con-
dition from Mωc = Ωo to Mωc = Ωo± q̄xv0 (q̄x stands for
an effective average wavevector), and thus is relevant to
the value of bias velocity v0. We refer these humps as zero-
photon humps. When an ac field of frequency ω = 0.1Ωo

is applied, we see that (1) the humps descend and val-
leys ascend, and (2) additional resonant peaks emerge on
both sides of each zero-photon hump. The positions of
these side peaks can be somewhat related to the condi-
tion Mωc + nω = Ωo, (n = 1, 2, 3, ..). These peaks are
referred to as multiphoton resonant peaks and identified
by two integers (M , n). With increasing the strength of
the high-frequency field, the zero-photon humps further
decrease and the multiphoton peaks, (1,1), (1,-1), (1,2),
(1,-2), (1,-3), (2,1), (2,-1), and (2,-2) show up clearly. In
the case of Eω = 0.01E∗o , the previous humps become val-
leys, and the above-mentioned multiphoton peaks appear
quite distinct.

On the other hand, the electron temperature as a func-
tion of the magnetic field, though oscillates and shows
multiphoton peaks, the overall effect is quite small at this
strength of the radiation field as shown in Figure 2.

5 Polar semiconductors
In the case of polar semiconductors, the dominant scat-
tering mechanism is the Fröhlich scattering by polar optic
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0.98
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e/

T

 ωc/Ωo

Fig. 2. The electron temperature Te/T versus ωc/Ωo, for the
same system and under the same condition as described in
Figure 1.

phonons: |M(q, λ)|2 = e2ΩLO(κ−1
∞ − κ−1

0 )/(2ε0q2), where
ΩLO is the frequency of the polar optic phonon, and κ0

and κ∞ are respectively static and high-frequency dielec-
tric constant of the material.

Making use of the expression forΠ02(n, n′, qz, Ω) given
in reference [16], in the nondegenerate limit we can write
ρ(v0) and ρE(v0) for the T⊥ configuration as

ρ(v0) = ρ∗LO

eµ/Te

mv0

ωc

ΩLO

×
∞∑

n=−∞

∑
n1,n2

∫ ∞
0

dqy
∫ ∞

0

dqz
∫

dqx
qx

(q2
‖ + q2

z)qz

× J2
n(qxrω)Cn1n2(l2q2

‖/2)An1n2
LO (qx, qz, nω), (42)

ρE(v0) = −ρ∗LO

eµ/Te

mv2
0

ωc

ΩLO

×
∞∑

n=−∞

∑
n1,n2

∫ ∞
0

dqy
∫ ∞

0

dqz
∫

dqx
ΩLO − nω
(q2
‖ + q2

z)qz

× J2
n(qxrω)Cn1n2(l2q2

‖/2)An1n2
LO (qx, qz, nω), (43)

with

An1n2
LO (qx, qz, nω) = exp

(
− (n1 + 1/2)ωc

Te

− [(n2 − n1)ωc +ΩLO + qxv0 − nω + q2
z/2m]2

2Teq2
z/m

)
× exp[(ΩLO + qxv0 − nω)/Te]− exp(ΩLO/T )

exp(ΩLO/T )− 1
, (44)

and

ρ∗LO ≡
m3Ω2

LO

4π4N2ε0

(
1
κ∞
− 1
κ0

)
. (45)
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Fig. 3. The multiphoton-magnetophonon resonance in the
longitudinal resistivity ρxx of a polar semiconductor driven
by a dc bias velocity v0 = 0.03vLO and by a radiation field
of frequency ω = 0.1ΩLO having three different amplitudes
Eω = 0.005, 0.0075, and 0.0125E∗LO in the T⊥ configura-
tion. The lattice temperature is T = 0.4ΩLO. The polar op-
tic phonon Fröhlich scattering is assumed to dominate. Here
ρ0 represents the resistivity of the system at the same lattice
temperature with the same dc bias velocity in the absence of
the magnetic field (B = 0) and in the absence of the radia-
tion field (Eω = 0). The multiphoton peaks are indicated by
two integers (M,n) with reference to the resonant condition
Mωc + nω = ΩLO.

The calculated longitudinal resistivity ρxx(v0) as a func-
tion of ωc/ΩLO in the case having dc bias v0 =
0.03vLO and ac-frequency ω = 0.1ΩLO, is plotted in
Figure 3, for 3 different values of the ac field strengths
Eω = 0.005E∗LO, 0.0075E∗LO, and 0.0125E∗LO. Here vLO ≡
(ΩLO/m)1/2 and E∗LO = (mΩ3

LO)1/2/|e|. All the features
described in the case of nonpolar optic phonon scattering
remain unchanged, and, as far as the oscillatory part is
concerned, the relative hump heights and valley depths are
essentially the same, except that in the case of nonpolar
phonon scattering the oscillatory resistivity is superposed
on a background part, which increases with increasing the
magnetic field.

6 Conclusion

We have developed a balance-equation approach to
terahertz-driven magnetotransport in semiconductors
with a dc or slowly-varying electric field, an intense po-
larized radiation field of THz frequency and a uniform
magnetic field, being in arbitrary directions and having
arbitrary strengths, applied simultaneously in the system.
These equations, which include all orders of multipho-
ton processes, have been applied to the examination of
the effect of a terahertz radiation on the magnetophonon
resonance of the longitudinal resistivity in the transverse

configuration in nonpolar and polar semiconductors sub-
jected to a dc bias.

We find that the previous magneto-phonon resonance
peaks in the absence of the high-frequency field are sup-
pressed by the irradiation of the terahertz field, while
many new peaks, which correspond to multiple photon
emission and absorption processes, emerge and may be-
come quite distinct, at moderately strong radiation field.
Although these multiphoton-magnetophonon resonance
peaks may be somewhat smeared by further broadening
of the Landau levels due to other mechanisms, it should
be observable in a magnetically quantized semiconductor
when it is exposed to an intense terahertz radiation.
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Sherwin, K.L. Campman, P.F. Hopkins, A.C. Gossard,
Phys. Rev. B 51, 18041 (1995).

7. A.G. Markelz, N.G. Asmar, B. Brar, E.G. Gwinn, Appl.
Phys. Lett. 69, 3975 (1996).
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